Tests¶
PREDICT¶
- class tests.test_predict.MockModel¶
Bases:
object
Mock model for testing the PREDICT class.
- tests.test_predict.predict_instance(sample_data)¶
Creates an instance of the PREDICT class using the provided sample data.
- Parameters:
sample_data (pd.DataFrame) – Sample data to be used for creating the PREDICT instance.
- Returns:
An instance of the PREDICT class.
- tests.test_predict.sample_data()¶
Creates a sample dataset for testing the PREDICT class.
- Returns:
Fake dataset with date and value columns.
- Return type:
pd.DataFrame
- tests.test_predict.test_add_log(predict_instance)¶
Test that logs can be added to the log dictionary.
- Parameters:
predict_instance (class) – Initialises with a dataset and a prediction model.
logs (Manages prediction windows and)
functions (allows for the addition of hooks to execute)
process. (during the logging)
- tests.test_predict.test_add_log_hook(predict_instance)¶
Test that hooks can be added to the log.
- Parameters:
predict_instance (class) – Initialises with a dataset and a prediction model.
logs (Manages prediction windows and)
functions (allows for the addition of hooks to execute)
process. (during the logging)
- tests.test_predict.test_get_log(predict_instance)¶
Test that the getLog method returns the log dictionary.
- Parameters:
predict_instance (class) – Initialises with a dataset and a prediction model.
logs (Manages prediction windows and)
functions (allows for the addition of hooks to execute)
process. (during the logging)
- tests.test_predict.test_initialisation(predict_instance)¶
Test that the PREDICT class is initialised correctly.
- Parameters:
predict_instance (class) – Initialises with a dataset and a prediction model.
logs (Manages prediction windows and)
functions (allows for the addition of hooks to execute)
process. (during the logging)
- tests.test_predict.test_run(predict_instance)¶
Test that the run method executes the prediction model.
- Parameters:
predict_instance (class) – Initialises with a dataset and a prediction model.
logs (Manages prediction windows and)
functions (allows for the addition of hooks to execute)
process. (during the logging)
Metrics¶
- class tests.test_metrics.MockModel¶
Bases:
object
Mock model class for testing.
- tests.test_metrics.test_CITL_calculation()¶
Tests the computation of the calibration-in-the-large metric on dummy data of a perfect model.
- tests.test_metrics.test_CITL_calculation2()¶
Tests the computation of the calibration-in-the-large metric on dummy data compared to a result from R.
- tests.test_metrics.test_CITL_calculation3()¶
Tests the computation of the calibration-in-the-large metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_OE_calculation()¶
Tests the computation of the O/E metric for a perfect model on dummy data.
- tests.test_metrics.test_OE_calculation2()¶
Tests the computation of the O/E metric on dummy data with the result compared to an R result.
- tests.test_metrics.test_OE_calculation3()¶
Tests the computation of the O/E metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_accuracy_computation()¶
Tests the computation of the accuracy metric on dummy data assuming a perfect model.
- tests.test_metrics.test_accuracy_computation2()¶
Tests the computation of the accuracy metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_auprc_computation()¶
Tests the computation of the AUPRC metric on dummy data assuming a perfect model.
- tests.test_metrics.test_auprc_computation2()¶
Tests the computation of the AUPRC metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_auroc_computation()¶
Tests the computation of the AUROC metric on dummy data assuming a perfect model.
- tests.test_metrics.test_auroc_computation2()¶
Tests the computation of the AUROC metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_c_slope()¶
Tests the computation of the calibration slope metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_c_slope_to_r()¶
Tests the computation of the calibration slope metric on dummy data compared to the results on the same data using R.
- tests.test_metrics.test_c_slope_to_r2()¶
Tests the computation of the calibration slope metric on dummy data compared to a result from R.
- tests.test_metrics.test_coxsnell_R2_calculation()¶
Tests the computation of the Cox-Snell R^2 metric for an imperfect model and a model predicting all the same probabilities on dummy data.
- tests.test_metrics.test_coxsnell_R2_calculation2()¶
Tests the computation of the Cox-Snell R^2 metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_f1_computation()¶
Tests the computation of the F1 score metric on dummy data assuming a perfect model.
- tests.test_metrics.test_f1_computation2()¶
Tests the computation of the F1 score metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_precision_computation()¶
Tests the computation of the precision metric on dummy data assuming a perfect model.
- tests.test_metrics.test_precision_computation2()¶
Tests the computation of the precision metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_recall_computation()¶
Tests the computation of the recall metric on dummy data assuming a perfect model.
- tests.test_metrics.test_recall_computation2()¶
Tests the computation of the recall metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_sensitivity_computation()¶
Tests the computation of the sensitivity metric on dummy data assuming a perfect model.
- tests.test_metrics.test_sensitivity_computation2()¶
Tests the computation of the sensitivity metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_specificity_computation()¶
Tests the computation of the specificity metric on dummy data assuming a perfect model.
- tests.test_metrics.test_specificity_computation2()¶
Tests the computation of the specificity metric on a model trained on the heart disease dataset.
- tests.test_metrics.test_sum_of_diff_calculation()¶
Tests the computation of the logistic regression error metric on dummy data assuming a perfect model.
- tests.test_metrics.test_sum_of_diff_calculation2()¶
Tests the computation of the logistic regression error metric on dummy data assuming a model that gets predictions right 25% of the time.
- tests.test_metrics.test_sum_of_diff_calculation3()¶
Tests the computation of the logistic regression error metric on dummy data assuming a model that never gets predictions right.
- tests.test_metrics.test_track_bayesian_coefs(mock_model)¶
Tests the TrackBayesianCoefs hook by checking if the coefficients remain the same.
Models¶
- tests.test_models.test_add_hooks()¶
Test that hooks can be added to the model.
- tests.test_models.test_evaluate_predictions()¶
Test that the evaluate predictions model works.
- tests.test_models.test_recalibrate_predictions()¶
Test that the recalibrate predictions model produces a non-None output and checking the recalibration hook is added.
- tests.test_models.test_regular_recalibrations()¶
Test that the regular recalibrations model updates when expected.
Triggers¶
- class tests.test_triggers.MockModel(preds)¶
Bases:
object
Mock model class for testing
- tests.test_triggers.input_data()¶
Create dummy binary outcome data for testing.
- Returns:
Dummy binary outcome data.
- Return type:
pd.DataFrame
- tests.test_triggers.test_accuracy_above_threshold(input_data)¶
Test that the accuracy threshold trigger works when accuracy is above the threshold.
- Parameters:
input_data (pd.DataFrame) – Dummy binary outcome data.
- tests.test_triggers.test_accuracy_below_threshold(input_data)¶
Test that the accuracy threshold trigger works when accuracy is below the threshold.
- Parameters:
input_data (pd.DataFrame) – Dummy binary outcome data.
- tests.test_triggers.test_accuracy_same_as_threshold(input_data)¶
Test that the accuracy threshold trigger works when accuracy is equal to the threshold.
- Parameters:
input_data (pd.DataFrame) – Dummy binary outcome data.
- tests.test_triggers.test_bayesian_refit_trigger(sample_data)¶
Test the Bayesian refit trigger function.
- Parameters:
sample_data (DataFrame) – Sample datetime data for testing.