Models¶
- class PREDICT.Models.BayesianModel(priors, input_data=None, predictColName='prediction', outcomeColName='outcome', dateCol='date', verbose=True, plot_idata=False, draws=100, tune=100, cores=12, chains=4, model_formula=None)¶
Bases:
PREDICTModel
A class which uses Bayesian regression to update the coefficients of a logistic regression model.
- Parameters:
priors (dict) – Dictionary of predictors (key) and their mean and stds of the coefficients (values) e.g. {“blood_pressure”: (2.193, 0.12)}, this must include “Intercept” as a dictionary key. If any of the prior keys are None then the prior coefficients are estimated using a logistic regression model.
input_data (pd.DataFrame) – The input data for creating the model to calculate initial priors if none are provided.
predictColName (str) – The name of the column in the dataframe containing the predictions (default=’prediction’).
outcomeColName (str) – The name of the column in the dataframe containing the outcomes (default=’outcome’).
dateCol (str) – The name of the column in the dataframe containing the dates (default=’date’).
verbose (bool) – Whether to print the priors and posteriors of the model (default=True).
plot_idata (bool) – Whether to plot the idata trace plot (default=False).
draws (int) – Number of draws to use in the Bayesian model (default=100).
tune (int) – Number of tuning steps to use in the Bayesian model (default=100).
cores (int) – Number of cores to use in the Bayesian model (default=12).
chains (int) – Number of chains to use in the Bayesian model (default=4).
model_formula (str) – The formula to use in the Bayesian model (default=None, if None then a standard linear model formula is used without interactions).
- Raises:
ValueError – If the priors are not in a dictionary format.
ValueError – If the required ‘Intercept’ is missing from the priors.keys().
ValueError – If priors are not provided and input_data is None.
Example
# Create a Bayesian model which refits and gives new coefficients and predictions when triggered. # Full example can be found in Examples/bayesian_example.ipynb model = BayesianModel(input_data=df, priors={“Intercept”: (0.34, 0.1), “age”: (1.56, 0.4), “systolic_bp”: (5.34, 0.2)}) model.trigger = BayesianRefitTrigger(model=model, input_data=df, refitFrequency=1)
- get_coefs()¶
Return the current coefficients of the model for the loghook.
- Returns:
Current priors of the model.
- Return type:
dict
- predict(input_data)¶
Makes predictions based on the input data.
- Parameters:
input_data (any) – The input data for making predictions.
- update(input_data)¶
Updates the model if required based on the input data.
- Parameters:
input_data (any) – The input data for updating the model.
- class PREDICT.Models.EvaluatePredictions(colName='prediction')¶
Bases:
PREDICTModel
A class used to evaluate the predictions arising from another model which are already in the dataframe.
- Parameters:
colName (str) – The name of the column in the dataframe containing the predictions (default=’prediction’).
- predict(input_data)¶
Makes predictions based on the input data.
- Parameters:
input_data (any) – The input data for making predictions.
- class PREDICT.Models.PREDICTModel¶
Bases:
object
A class used to represent the PREDICT Model.
- addPostPredictHook(hook)¶
Adds a hook to be executed after making predictions.
- Parameters:
hook (callable) – A function to be executed after predictions.
- addPrePredictHook(hook)¶
Adds a hook to be executed before making predictions.
- Parameters:
hook (callable) – A function to be executed before predictions.
- predict(input_data)¶
Makes predictions based on the input data.
- Parameters:
input_data (any) – The input data for making predictions.
- trigger(input_data)¶
Evaluates whether the model needs to be updated based on the input data.
- Parameters:
input_data (any) – The input data to evaluate the model update.
- Returns:
Returns False indicating no update is required.
- Return type:
bool
- update(input_data)¶
Updates the model if required based on the input data.
- Parameters:
input_data (any) – The input data for updating the model.
- class PREDICT.Models.RecalibratePredictions(predictColName='prediction', outcomeColName='outcome', dateCol='date')¶
Bases:
PREDICTModel
A class which recalibrates the predictions arising from another model based on the trigger function.
Recalibration involves using a logistic regression to adjust the model predictions.
Needs to be followed by setting a trigger function (see example).
- Parameters:
predictColName (str) – The name of the column in the dataframe containing the predictions (default=’prediction’).
outcomeColName (str) – The name of the column in the dataframe containing the outcomes (default=’outcome’).
dateCol (str) – The name of the column in the dataframe containing the dates (default=’date’).
Examples
# Create a model which recalibrates predictions when triggered # Full example can be found in Examples/recalibration_example.ipynb model = RecalibratePredictions() model.trigger = AccuracyThreshold(model=model, threshold=0.7)
- CalculateControlLimits(input_data, startCLDate, endCLDate, warningCL, recalCL, warningSDs, recalSDs)¶
Calculate the static control limits of data using either the specific period (startCLDate to endCLDate), the inputted control limits (warningCL, recalCL), or the first X months (nummMonths) since the start of the data.
- Parameters:
input_data (pd.DataFrame) – The input data for updating the model.
startCLDate (str) – Start date to determine control limits from. Defaults to None.
endCLDate (str) – End date to determine control limits from. Defaults to None.
warningCL (float) – A manually set control limit for the warning control limit.
recalCL (float) – A manually set control limit for the recalibration trigger limit.
warningSDs (int or float) – Number of standard deviations from the mean to set the warning limit to. Defaults to 2.
recalSDs (int or float) – Number of standard deviations from the mean to set the recalibration trigger to. Defaults to 3.
- Returns:
Two upper control limits for the warning and danger/recalibration trigger zones.
- Return type:
float, float
- predict(input_data)¶
Makes predictions based on the input data.
- Parameters:
input_data (any) – The input data for making predictions.
- update(input_data)¶
Updates the model if required based on the input data.
- Parameters:
input_data (any) – The input data for updating the model.